
R. Nkambou et al. (Eds.): Advances in Intelligent Tutoring Systems, SCI 308, pp. 281–299.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 14
Bayesian Student Modeling

Cristina Conati

Department of Computer Science, University of British Columbia,
2366 Main Mall, Vancouver, BC, V6G3C1
conati@cs.ubc.ca

Abstract. Bayesian networks are a formalism for reasoning under uncertainty that
has been widely adopted in Artificial Intelligence (AI). Student modeling, i.e., the
process of having an ITS build a model of relevant student’s traits/states during in-
teraction, is a task permeated with uncertainty, which naturally calls for probabil-
istic approaches. In this chapter, I will describe techniques and issues involved in
building probabilistic student models based on Bayesian networks and their exten-
sions. I will describe pros and cons of this approach, and discuss examples from
existing Intelligent Tutoring Systems that rely on Bayesian student models

14.1 Introduction

One of the distinguishing features of an Intelligent Tutoring System (ITS) is that
it is capable of adapting its instruction to the specific needs of each individual
student, as good human tutors do. Adaptation can be performed at different
levels of sophistication, from responding to student observable performance (e.g.,
errors), to targeting student assessed knowledge (or lack thereof), to helping
students achieve specific goals (e.g., generate a given portion of a problem
solution), to reacting to student emotions, to scaffolding meta-cognitive abilities
(e.g., self-monitoring).

The more an ITS needs to know about its student to provide the desired level of
adaptation, the more challenging it is for the ITS to build an accurate student
model (see chapter by Beverly Woolf) based on the information explicitly avail-
able during interaction, because this information usually provides only a partial
window on the desired student states. In other words, student modeling can be pla-
gued by a great deal of uncertainty. In this chapter, I will illustrate an approach to
handle this uncertainty that relies on the sound foundations of probability theory:
Bayesian networks (Pearl 1988). Since the late eighties, Bayesian networks have
been arguably the most successful approach for reasoning under uncertainty in AI,
and have been widely used for both user modeling and student modeling. The rest
of this chapter starts by providing some basic definitions. Next, it introduces Dy-
namic Bayesian networks, an extension of Bayesian networks to handle temporal
information, and provides case studies to illustrate when and how to use static vs.
dynamic networks in student modeling. The last part of the chapter discusses two

282 C. Conati

main challenges in using Bayesian networks in practice: how to choose the net-
work structure and how to specify the network parameters. For each of these chal-
lenges, the chapter illustrates a variety of solutions and provides examples of how
they have been used in applications to student modeling.

14.2 Bayesian Networks in a Nutshell

Bayesian networks are graphical models designed to explicitly represent condi-
tional independence among random variables of interest, and exploit this informa-
tion to reduce the complexity of probabilistic inference (Pearl 1988). Formally, a
Bayesian network is a directed acyclic graph where nodes represent random
variables and links represent direct dependencies among these variables. If we as-
sociate to each node Xi in the network a conditional probability table (CPT) that
specifies the probability distribution of the associated random variable given its
immediate parent nodes parents(Xi), then the Bayesian network provides a com-
pact representation of the Joint Probability Distribution (JPD) over all the vari-
ables in the network.

P(X1, …,Xn) = ∏n
i= 1 P (Xi | Parents(Xi)) (1)

This equation holds assuming that the network has been constructed so that
each node is conditionally independent of all its non-descendant nodes given its
parents (see (Russel and Norvig 2010) for more details).

Fig. 14.1 Sample Bayesian network

Figure 14.1 shows a simple Bayesian network representing the following do-
main: the nodes Explanation A and Explanation B (indicated as EA and EB in the
relevant CPTs) are binary variables each representing the probability that a student
receives a corresponding explanation of concept C. The two explanations are pro-
vided independently, e.g., one at school by a teacher and one at home by a parent.
The node Concept C (indicated as C in the relevant CPTs) is a binary variable rep-
resenting the probability that a student understands the corresponding concept.
The nodes Answer 1 and Answer 2 (indicated as A1 and A2 in the relevant CPTs)

Bayesian Student Modeling 283

are binary variables each representing the probability that a student responds
correctly to two different test questions related to concept C. The links and
conditional probabilities in the network represent the probabilistic dependencies
between receiving each of the two possible explanations for the concept, under-
standing it and then being able to answer related test questions correctly.

14.3 Static vs. Dynamic Bayesian Networks

The Bayesian network in Fig. 14.1 is static, i.e., it is suitable to perform probabil-
istic inference over variables with values that don’t change over time. What
changes and is tracked by a static Bayesian network is the belief over the state of
these variables as new evidence is collected, i.e., the posterior probability distribu-
tion of the variables given the evidence.

Fig. 14.2 Example DBN

Dynamic Bayesian networks (Dean and Kanazawa 1989), on the other hand,
track the posterior probability of variables whose value change overtime given se-
quences of relevant observations. A Dynamic Bayesian networks (DBN from now
on) consists of time slices representing relevant temporal states in the process to be
modelled. For instance, Fig. 14.2 shows two time slices of a dynamic version of the
network in Fig. 14.1. The first slice to the left represents the state of the variables
Concept C, Explanation A and Explanation B from Fig. 14.1 after observing a stu-
dent’s answer to the first test at a given time ti. The second slice represents the state of
the same variables after observing a student’s answer to the second test at a succes-
sive time ti+1 . The link between the variables for Concept C at times ti and ti+1 models
the influence of time on knowledge of this concept. It can be used, for instance,
to model forgetting by adding to the CPT for Concept C at time ti+1 a non-zero
probability that the student does not know concept C at that time given that she knew
it at time ti.

A key difference between the static network in Fig. 14.1and the dynamic network
in Fig. 14.2 is in how evidence on student test answers is taken into account to update
the posterior probability of Concept C. In Fig. 14.1, two subsequent observations on
Answer 1 and Answer 2 would have the same weight in updating the probability of

284 C. Conati

Concept C, which makes sense if the true value of that variable does not change as
the observations are gathered. In Fig. 14.2, the effect of having observed Answer 1 at
ti on the probability of Concept C at ti+1 is mediated by the probability of Concept C at
time ti, while having observed Answer 2 at ti+1 has a direct effect. This makes sense if
the true value of Concept C can change overtime, because more recent observations
are better reflections of the current state of a dynamic process than older ones.

14.3.1 Sample Applications to Student Modelling

Static networks can be used in student modeling as assessment tools under the as-
sumption that the variables to be assessed (e.g., knowledge) are not changing as
new evidence (e.g., test results) comes in. For instance, Mislevy (1995) describes
a Bayesian student model used by the HYDRIVE tutoring system to assess a
variety of skills and knowledge related to troubleshooting an aircraft hydraulics
system. Martin and Vanlehn (1995) use a Bayesian student model for off-line
assessment of student physics knowledge from evidence on completed problem
solutions. Arroyo and Woolf (2005) describe a Bayesian network that assesses stu-
dent attitudes toward learning with Wayang Outpost, an ITS for math (e.g.,
whether the student liked the system, found it helpful, learned from it) from statis-
tics on the student interaction with the system (e.g., time spent per problem, time
spent per action, average incorrect actions).

One of the first examples of using DBNs in student modeling is the knowledge
tracing mechanism implement in the CMU Cognitive Tutors (Corbett and
Anderson 1995). This mechanism uses Bayes theorem to compute the probability
of mastering a rule at time ti+1 as a function of both the probability of knowing the
rule at time ti and observations of student problem solving steps pertaining to that
rule at time ti+1. While the original formulation of this mechanism was not in terms
of DBNs, Reye (Reye 1998)has shown that it can be formulated as a DBN with
the same basic behavior. One limitation of this knowledge tracing mechanism is
that it requires knowing exactly which domain rule the current student solution
step refers to. In order to eliminate possible ambiguities in mapping student
solution steps with domain rules, this approach requires that students follow one
specific solution defined a priory in the student model. For the same reason, it re-
quires that students explicitly show all their solutions steps, i.e., it does not allow
students to combine solution steps in their heads and generate actions that are the
results of these mental computations. These requirements result in fairly con-
strained interaction that may become frustrating for some students. Finally, in
knowledge tracing probabilistic update is limited to one rule at the time, i.e., this
mechanism does not exploit the dependencies among the different rules involved
in creating a complete problem solution.

The student model of the Andes tutoring system for physics (Conati et al. 2002)
extends the approach proposed by Martin and Vanlehn (1995) to address the
above limitations of knowledge tracing. For each problem solved by a student,
Andes builds a static Bayesian network whose nodes and links represent how the
various steps in a problem solution derive from previous steps and physics rules

Bayesian Student Modeling 285

Fig. 14.3 A physics problem and a segment of the corresponding Bayesian network in the
Andes tutoring system

(task-specific network from now on). For instance, Fig. 14.3B shows a (simplified)
section of the task specific network for the problem in Fig. 14.3A, involving the
application of Newton’s second law to find the value of a normal force. Nodes in
this network represent (i) facts corresponding to explicit solution steps (nodes la-
beled with a F- prefix in, Fig. 14.3B); (ii) problem solving goals (nodes labeled
with a G- prefix); (iii) physics rules (nodes labeled with a R- prefix) that generate
these facts and goals when applied to preceding facts and goals in the solution.
Specific rule applications are indicated by nodes labeled with a RA- prefix in Fig.
14.3B. Alternative ways to solve a problem are represented as alternative paths to
one or more solution steps in the network. Students can perform problem solving
steps in their heads as they desire. When a problem solving step is entered in
the Andes interface, Andes retrieves the corresponding fact node in the current
task-specific Bayesian network, sets its value to true and computes the posterior
probability of the other nodes in the network given this new evidence. All nodes
involved in generating this step (i.e., all ancestors of the corresponding fact node)
may be influenced by this update, with strength dictated by the probabilistic de-
pendencies defined in the network’s CPTs. Essentially, the task-specific Bayesian
network allows Andes to guess which implicit reasoning has generated a
given step, with the accuracy of the guess being influenced by how many steps

286 C. Conati

the student has kept in her head and how many alternative ways to generate each
step are represented in the network.

It should be noted that the task-specific network that Andes uses to track how a
student solves a specific problem is not dynamic. Instead, Andes uses a form of
dynamic network to track the evolution of student knowledge from one solved
problem to the next. In particular, Andes maintains a long-term student model that
encodes the posterior probability of each physics rule known by the system given
all the solutions that a student has generated to so far. When the student starts a
new problem, Andes generates the task-specific network for that problem as in
Fig. 14.3, and initializes the prior probabilities of the rule nodes in the network us-
ing the posterior probabilities of the corresponding rules in the long-term model.
As soon as the student terminates the problem, Andes discards its task-specific
network, but saves the posterior probability of each of the network’s rule nodes in
the domain-general student model. This probability will then become the prior of
the rule node in the task-specific network for the next problem that uses that rule.
This process essentially corresponds to having a DBN where each time slice con-
tains a rule node for each rule in the Andes’ knowledge base; a new time slice is
created when the student opens a new problem, and spans the time it takes the stu-
dent to terminate problem solving. Removing a time slice when problem solving is
over and saving rule posteriors to be used as priors in the next time slice is a form
of recursive filtering (or roll-up). This process allows for maintaining at most two
time slices in memory, as opposed to all the time slices tracked (Russel and
Norvig 2010).

An alternative to the approach used in Andes is to create a new time slice every
time a student generates a new action. We did not adopt this approach in Andes
because the roll-up mechanism can be computationally expensive when performed
after every student action on networks as large as Andes’. While this approxima-
tion may prevent Andes from precisely tracking learning that happens in between
solution steps, it did not prevent Andes and its student model to perform well in
empirical evaluations (Conati et al. 2002). Because, in the worst-case scenario,
probabilistic update in Bayesian networks is intractable, simplifications like the
one discussed here must often be made to ensure that the networks are usable in
practice, and their impact/acceptability must be verified empirically. (Murray et al.
2004) describe an approach that does create a new slice after every student actions
in networks comparable to Andes’. Despite adopting techniques to make network
structure and CPTs more compact, performance testing based on simulated
student actions showed that exact inference on the resulting models was not
feasible. Using algorithms for approximate inference (Russel and Norvig 2010)
improved performance, but still resulted in delayed response times on the larger
networks tested.

An example of a DBN-based student model that creates time slices after every
action and that has been used is practice is found in Prime Climb, an educational
game to help students learn number factorization.

In Prime Climb students in 6th and 7th grade practice number factorization by
pairing up to climb a series of mountains. Each mountain is divided into numbered
sectors (see Figure 4), and each player can only move to a number that does not

Bayesian Student Modeling 287

Fig. 14.4 The Prime Climb Interface

share any common factors with her partner’s number, otherwise s/he falls. To help
students with the climbing task, Prime Climb includes a pedagogical agent (see
Figure 4) for each player, that provides individualized support, both on demand
and unsolicited, when the student does not seem to be learning from the game. To
provide well-timed and appropriate interventions, the agent must have an accurate
model of student learning, but maintaining such model is hard because perform-
ance tends to be a fairly unreliable reflection of student knowledge in educational
games. PrimeClimb uses DBNs to handle the uncertainty involved in this model-
ling task. More specifically, there is a DBN for each mountain that a student
climbs (the short-term student model). This DBN assesses the evolution of a stu-
dent’s number factorization knowledge during game play, based on the student’s
game actions. Each time slice in the DBN includes a Factorization node Fx for
each number that is relevant to make correct moves on the current mountain (i.e.,
there is a node for each number on the mountain and for each of its factors). Each
of these factorization nodes represents whether the student has mastered the
factorization of that number. A new time slice is created after every new student
action, e.g., after the student clicks on a number x to move there. The one-slice-
per-action approach is feasible in Prime Climb because each time slice rarely con-
tains more than a few dozens nodes. We will provide more details of the nature of
the Prime Climb’s DBNs in a later section.

14.4 Using Bayesian Networks in Practice

There are several advantages in using Bayesian networks for reasoning under un-
certainty in general, and for student modeling in particular.

• They provide a more compact representation of the joint probability distribu-
tion (JPD) over the variables of interest. To fully specify the JDP P(X1, …,Xn)
over variables X1, …,Xn, it is necessary to specify the probability of each
possible combination of variable’s values (e.g., mn numbers in the case of n
m-valued variables). To fully specify the same distribution expressed via a

288 C. Conati

Bayesian network, it is sufficient to specify for each node with k parents the mk
entries of the associated CPT. If k << n, i.e., if the variables to be represented
are sparsely connected, then the Bayesian network brings a substantial saving
in the number of parameters that need to be specified.

• Algorithms have been developed that exploit the network’s structure for com-
puting the posterior probability of a variable given the available evidence on
any other variable in the network. While the worse case complexity of prob-
abilistic inference in Bayesian networks is still exponential in the number of
nodes, in practice it is often possible to obtain performances that are suitable
for real-world applications.

• The intuitive nature of the graphical representation facilitates knowledge
engineering. It helps developers focus on identifying and characterizing the
dependencies that are important to represent in the target domain. Even when
dependencies are left out to reduce computational complexity, these decisions
are easy to track, record and revise based on network structure, facilitating an
iterative design-and-evaluation approach to model construction.

• Similarly, the underlying network structure facilitates the process of generating
automatic explanations of the results of probabilistic inference, making Bayes-
ian networks very well suited for applications in which it is important that the
user understands the rational underling the system behavior, as it is often the
case for Intelligent Tutoring systems (e.g., Zapata-Rivera and Greer 2004).

• Finally, Bayesian networks lend themselves well to support decision making
approaches that rely on the sound foundations of decision theory. This means
that selection of tutorial actions can be formalized as finding the action with
maximum expected utility given a probability distributions over the outcomes
of each possible action and a function describing the utility (desirability) of
these outcomes (e.g., Murray et al. 2004; Mayo and Mitrovic 2001).

As is the case for any representation and reasoning paradigm, however, the bene-
fits brought by Bayesian networks come with challenges. The two that arguably
have the highest impact on the effort required by adopting this technology are:
how to select a suitable structure and how to set the necessary network parameters.
The next section discusses these two challenges and solutions proposed in the con-
text of using Bayesian networks in student modeling.

14.5 Choosing Network Structure and Parameters: Examples
from Student Modeling

14.5.1 Network Structure

14.5.1.1 Structure Defined Based on Knowledge

One common misconception related to structure definition in Bayesian networks is
that the direction of the link between two variables must represent causality. In

Bayesian Student Modeling 289

reality, the only constraint on structure is that every variable be (or can be
reasonably assumed to be) independent of all its non-descendant nodes in the
network, given its parent nodes. What is true is that structuring the network in the
direction of causality makes it easier to satisfy the above constraint, because ef-
fects are independent of any previous influence given their immediate causes. In
the domain represented in Fig. 14.1, for instance, whether the student understands
or not concept C fully defines the probability that the student be able to answer
questions about that concept, regardless of which explanation, if any, the student
received.

Furthermore, defining links in the causal direction generally results in a more
sparsely connected network. In our example, because understanding the concept
fully specifies the probability of each answer, there is no direct dependency be-
tween the answers and thus there is no need for a link between the corresponding
nodes. There is also no need for a direct link between the two explanation nodes,
because we said they are provided independently.

Fig. 14.5 Alternative structure for the Bayesian network in Figure 1

On the other hand, if we define the network as in Fig. 14.5, things change. We
need a direct link between the two answer nodes because, given no other informa-
tion, the belief that a student can generate a correct answer to a test is affected by
whether or not the student can generate a correct answer to a different test that
taps the same knowledge. Similarly, we need a direct link between the two expla-
nation nodes because they are dependent if we know the true state of the student
understanding of concept B. For instance, knowing that the student understands
the concept and did not receive explanation A should increase the probability that
the student received explanation B. This relationship between explanation A, ex-
planation B and the understanding of concept C is fully captured by the structure
in Fig. 14.1, but needs the extra arc between EA and EB in Fig 14.5. Still, the two
networks in Fig 14.1 and Fig. 14.5 are equivalent if their CPTs are specified so
that they represent the same JPD over the five variables involved. Which structure
to select depends mostly on how much effort is required to specify the necessary
network parameters (i.e., probabilities in the CPTs). Sparser networks include
fewer parameters, but it is also important to consider how easy it is to quantify the
needed probabilities.

290 C. Conati

In Andes, for instance, network structure is purely causal, capturing the follow-
ing basic relation between knowledge of physics principles and problem solving
steps: in order to perform a given problem solving step, a student needs to know
the related physics rule and the preconditions for applying the rule. If a step can be
derived from different rules, the student needs to apply at least one of them. As we
will see in more detail in the next section, this causal structure yields very intuitive
CPTs that can be specified via a limited number of parameters.

Matters are bit more complicated with the student model for the Prime Climb
educational game. As we mentioned in a previous section, the student’s progress
on a Prime Climb mountain is tracked by a DBN that includes factorization nodes
Fx for all the numbers on that mountain and their factors. Click nodes Cx are intro-
duced in the model when the corresponding actions occur, and are set to either true or
false depending upon whether the move was correct or not. Fig. 14.6 illustrates the
structure used in the model to represent the relations between factorization and click
nodes. The action of clicking on number x when the partner is on number k is repre-
sented by adding a click node Cx with parent nodes Fx and Fk (see Fig. 14.6b).

Fig. 14.6 Factorization nodes in the Prime Climb student model, where Z=X*G and
Y=V*W*X; b: Click action

This structure represents the causal relationship between factorization knowledge
and game actions that depend on it, which is intuitive to formalize: the correctness of
a click is influenced by whether the student knows the factorization of the two num-
bers involved. The probability should be very high if the student knows both num-
bers, lower if the student knows only one number, and close to 0 if the student knows
neither. Less obvious is how to choose the structure that represents the relationship
between the factorization knowledge of a number and the factorization knowledge of
its factors, because this relationship is not strictly causal. The rationale underlying the
structure that was chosen for the Prime Climb network was derived based on discus-
sion with mathematics teachers: knowing the prime factorization of a number influ-
ences the probability of knowing the factorization of its factors, while the opposite is
not true. It is hard to predict if a student knows a number’s factorization given that
s/he knows how to factorize its non-prime factors. To represent this rationale, factori-
zation nodes are linked as parents to nodes representing their non-prime factors. The
conditional probability table (CPT) for each non-root factorization node (e.g. Fx in

Bayesian Student Modeling 291

Fig. 14.6a) is defined so that the probability of the node being known is high when all
parent factorization nodes are true, and decreases proportionally with the number of
unknown parents.

14.5.1.2 Structure Defined Based on Data

So far we have discussed how to define network structure based on existing
knowledge of the dependencies among the relevant variables, but this approach is
not feasible when the variables involved are not as clearly related as the ones in
Andes and Prime Climb. The alternative is to define the structure based on data.
Existing algorithms (e.g., Buntine 1996; Moore and Wong 2003) perform some
form of heuristics search over the space of possible structures. The heuristics used
to evaluate points in the search space generally rely on either statistical measures
of correlation to verify whether the dependencies implicit in a given structure re-
flect the dependencies in the data, or measures related to the model’s log likeli-
hood P(data|model), i.e., how well a given model explains the available data.
These algorithms, however, require substantial amount of data to learn complex
networks, which has limited their adoption in student modelling so far. To deal
with limited data availability, existing work on learning the structure of Bayesian
student models has combined ideas from these algorithms with heuristics based on
knowledge of the target domain. Zhou and Conati (2003) for instance, have used a
data-based approach to define the structure of a Bayesian student model that com-
bines information on student personality and interaction patterns to assess student
goals while playing Prime Climb. Using expert knowledge to define the structure
of this DBN was not possible. While there are theories in psychology that can be
used to relate personality to goals users may be pursuing while playing an educa-
tional game (e.g,, learn vs. having fun), these theories are too high-level to allow
defining specific dependencies among these variables (see for instance Costa and
McRae (1992)). Similarly, while it is intuitive that interaction behaviours should
are in general affected by user goals, there is limited knowledge on how goals ac-
tually impact interaction behaviours in novel environments such as Prime Climb.

To learn the structure of the goal assessment network from data, Zhou and
Conati (2003) run a user study during which the interaction patterns of students
playing Prime Climb were logged and questionnaires were used to collect data on
user personality and interaction goals. Because the amount of data collected was
not sufficient to reliably apply existing algorithms to learn the complete network
structure, this work used a greedy variation that separately builds and then com-
bines different subparts of the network. The dependencies to be represented in
each subpart are selected by running a correlation analysis over the relevant vari-
ables and choosing only those correlations that are statistically significant and
above a given threshold for strength. The choice among the alternative structures
that can represent the selected dependencies is made based on measures of log
likelihood, and by using intuition to choose between structures with similar scores.
Although this approach is not sound because the log marginal likelihood measure
is not additive over network subparts, the resulting network (shown in Fig. 14.7)
showed to be effective in assessing student goals when inserted in a larger model

292 C. Conati

Fig. 14.7 Fragment of the goal assessment network in (Zhou and Conati 2003)

that relies on these goals as one of the elements to infer student emotions (Conati
and Maclaren 2009). Arroyo and Wolf (2005) use a similar approach to learn the
structure of the Bayesian network that relates interaction behaviors to user atti-
tudes, mentioned in section 14.3.1.

14.5.2 Network Parameters

“Where do the parameters come from?” is arguably the first and most common
objection that is raised in research that applies Bayesian networks to real world
problems. As is the case for structure, the two main approaches to parameter
specification are learning the parameters from data, or relying on domain experts
to estimate them. Relying on expert judgment is costly and error prone. It is diffi-
cult for humans to commit to numbers their intuitions over given probabilistic de-
pendencies. There has been substantial research on techniques that support the
probability elicitation process (e.g., Keeney and von Winterfeldt 1991), but these
techniques usually involve rather lengthy elicitation procedures and thus tend to
be impractical when expert availability is limited. Still, when data is not available,
relying on experts is the only viable approach and having conditional probabilities
that are intuitive to specify can greatly facilitate parameter elicitation. In this sec-
tion, will discuss one technique that can facilitate parameter specification by re-
ducing the number of parameters to be specified, and two techniques for learning
parameters from data

14.5.2.1 Parameters Reduction

One approach that can help reduce the effort of parameter specification is to
reduce the number of parameters by approximating the necessary conditional

Bayesian Student Modeling 293

probabilities via probabilistic variations of standard logic gates. This is the ap-
proach used by Andes to define the conditional probabilities in its task-specific
networks.

Recall from section 14.3.1 that a task-specific network in Andes represents one
or more solutions to a problem in terms of how each solution element derives from
a physics rule and from the solution elements that are preconditions for rule appli-
cation. Solution elements are either physics facts or problem solving goals, (col-
lectively identified for convenience as propositions nodes PROP- in Fig. 14.8).
Specific rule applications are represented in the network by rule application nodes
(Rule-Appl nodes in Fig. 14.8).

Fig. 14.8 probabilistic relations among rules, rule applications and their effects in Andes's
task specific network

The parents of each Rule-application node include exactly rule, and a number
of Proposition nodes corresponding to the rule’s preconditions (see Fig. 14.8). A
Rule-application node’s value is true if the student has applied or can apply the
corresponding rule to the propositions representing its preconditions, false other-
wise. The probabilistic relationship between a Rule-application node and its par-
ents is a Noisy-AND probabilistic gate (Henrion 1989). Here the Noisy-AND
models the assumption that, in order to apply a rule, a student needs to know the
rule and all its preconditions, although there is a non-zero probability α (the noise
in the Noisy-AND), that the student will fail to apply the rule when s/he can, be-
cause of an error of distraction or some other form of slip. Thus, the α in Andes’
Noisy-AND gates is an estimate of how likely it is that a student commits a slip,
and it is the only parameter that needs to be specified to define the CPTs of rule-
application nodes, regardless of how many parents they have.

Proposition nodes have as many parents (rule-application nodes) as there are
ways to derive them. Thus, if there are two different rule applications that lead to
the same solution element, then the corresponding Proposition node will have two
parents (see Fig. 14.8). In Andes, the conditional probabilities between Proposi-
tion nodes and their parents are described by a Leaky-OR relationship (Henrion
1989), as shown in the lower part of Fig. 14.8. In a Leaky-OR relationship, a node

294 C. Conati

is true if at least one of its parents is true, although there is a non-zero probability
β of a “leak,” that the node is true even when all the parents are false. This leak
represents in Andes the probability that a student can derive a step via guessing or
in some other way not represented in the network, and it is the only parameter that
needs to be specified to define the CPTs of proposition nodes, regardless of how
many alternative ways to derive a step the network encodes.

While the use of probabilistic logic gates in Andes greatly reduces the number
of parameters that need to be specified, assessing the probability of a slip for each
rule application and the probability of a guess for each solution element can still
be a daunting task. The approach used in Andes follows a strategy that is often
helpful when using Bayesian networks: make one or more simplifying assump-
tions that facilitate model definition and verify empirically whether the resulting
model still yields an acceptable performance. The simplifying assumption made in
Andes with respect to network parameters is that all slip and guess parameters are
the same in the task-specific networks. Model adequacy was verified indirectly via
empirical evaluations of the complete Andes system. The most extensive evalua-
tion involved an experimental condition with 140 students using Andes for home-
work activities over the course of several weeks, and a control condition with 135
students doing homework without Andes. Students in the Andes condition scored
significantly higher on a midterm exam covering relevant material. The accuracy
of the Andes model was also analyzed directly by studying its performance in as-
sessing the knowledge profile of simulated student (VanLehn and Niu 2001). This
evaluation focused on performing sensitivity analysis on the Andes models to
identify the factors that most impact model performance. The analysis revealed
that the factor with the highest impact is, not surprisingly, the number of solution
steps available as evidence to the model. I contrast, varying slip and guess pa-
rameters showed to have little effect on accuracy, confirming that the assumption
of uniform slip and guess parameters was an acceptable one to make in light of the
savings that it brings in effort for model specification.

14.5.2.2 Learning Parameters from Data

When all nodes in a Bayesian networks are observable, the entries for the network’s
CPTs can be learned via maximum-likelihood parameter estimation from frequency
data (Russel and Norvig 2010). Unfortunately, in student modelling it is often the
case that the variables of interest are not observable (e.g. student knowledge). Even
when the variables are in theory observable (e.g., student goals, emotional states), in
practice it can be very difficult to collect data on them,. Still, learning parameters
from data is desirable because it eliminates the need to resort to the subjective judg-
ment of experts. This judgement is not only hard to obtain and possibly fallacious, it
can also be altogether unavailable when trying to model novel phenomena such as the
relationships between student interaction with an ITS and student emotional states.

For this reason, there has been increasing interest in investigating how to ex-
ploit data-based techniques for parameters definition in student modeling. One ap-
proach, pioneered by Mayo and Mitrovic (2001), is to include in the student model
only variables that are easily observable from interaction events with the tutoring
system. In (Mayo and Mitrovic 2001) these variables model success or failure in

Bayesian Student Modeling 295

using a variety of skills involved in correctly punctuating sentences. In particular,
for each relevant skill, the Bayesian network in (Mayo and Mitrovic 2001) in-
cludes a variable representing the probability that a student will apply the skill
correctly the next time it is relevant, given the outcome of the student’s last at-
tempt to apply the skill. The CPTs in the network were learned from log files of
students solving punctuation problems in CAPIT, a tutoring system to help stu-
dents practice punctuation skills. The network predictions are then used by CAPIT
to automatically select new exercises for students, based on the criterion that a
good exercise should involve several skills that the student has mastered and one
or two skills that the student may still apply incorrectly. The idea of including in
the student model only variables that are easily observable from interaction events
obviously constraints the depth and sophistication of the inferences that an ITS
can make about its students. However, Mayo and Mitrovic (2001) show that this
approach is suitable and effective when the target instructional domain and inter-
actions are of limited complexity.

Fig. 14.9 Simple Bayesian network to predict self-explanation from action latency and gaze
patterns in ACE

A second approach to learning the parameters of a student model from data relies
on conducting empirical studies designed ad hoc to collect data on variables not ob-
servable from basic interaction events (we’ll call these variables “hard-to-observe”, to
distinguish them from truly unobservable variables such as knowledge). For instance,
Conati et al. (2005) conducted a study to collect data for a DBN that assesses student
self-explanation behaviour from action latency and gaze patterns while the student is
using an interactive simulation of mathematical functions. Self-explanation is the
process of clarifying and elaborating instructional material to oneself, and it generally
has a strong impact on learning (Chi 2000). In the context of studying interactive
simulations, self-explanation relates to the effort a student makes to explain the ef-
fects of the manipulations performed on simulation parameters. The ACE system
(Bunt et al. 2001; Conati and Merten 2007) aims to track student effort in self-
explanation and provide adaptive interventions to increase this effort when needed.
The study in (Conati et al. 2005) collected verbal protocols of students interacting
with ACE, and analyzed these protocols to identify both episodes in which students
generated self-explanations as well as episodes in which students failed to reason
about the behaviour of the interactive simulation. These episodes where then

296 C. Conati

matched to both log data on latency between student actions, as well as attention pat-
terns over salient elements on the ACE interface, tracked via an eye-tracker. Frequen-
cies from this dataset where then used to set the CPT of the simple Bayesian network
shown in Fig. 14.9 (also known as a Naive Bayes classifier). A follow-up study
showed that, when added to a more complex model of student learning, the network
in Fig. 14.9 reliably supports the assessment of both student self-explanation and
learning during interaction with ACE (Conati and Merten 2007). D’Mello et al.
(2008) and Conati and Maclaren (2009) have adopted similar approaches relying
on sophisticated data collection to build student models that assess student emo-
tions from a variety of evidence sources.

In the research described above, it was not known upfront which observable
factors could be good predictors of the hard-to-observe variables. Under these cir-
cumstances, in order to create a Bayesian student model researchers need to first
find these predictors, which requires setting up experiments to collect data on the
hard-to-observe variables. Once the data is collected and predictors are identified,
everything is in place to apply standard maximum-likelihood parameter estima-
tion. On the other hand, if there is an established dependency between the target
hard-to-observe variables and a set of observable predictors, then the network pa-
rameters can be learned using EM (Dempster, et al. 1977). EM (which stands for
Expectation-Maximization) is a class of algorithms that learn the parameters of a
model with hidden variables by successive approximations based on two steps: the
expectation step generates expected values of hidden variables from the current
version of the model with approximated parameters; the maximization step refines
the model parameters by performing maximum-likelihood parameter estimation
using the expected values as if they were observed values. Thus, using EM re-
moves the need for setting up complex studies to get values for hard-to-observe
variables, when the dependency structure between these variables and a battery of
observable variables is already known. Fergusson et al. (2006), for instance, used
EM to learn the parameters of a Bayesian network that models knowledge of 12
geometry skills. In particular, EM was used to learn the dependencies between the
variables representing this knowledge, and observable variables representing test
questions designed specifically to assess the 12 target skills. The data for this work
comes from a test that students in a Massachusetts high school had to take as part
of a field study to evaluate the Wayang Outpost ITS for math.

Collecting sufficient amounts of data is the bottleneck in using any form of ma-
chine learning to specify a student model. It often requires setting up strong rela-
tionships with schools so that the necessary data can be collected as part of school
activities involving whole classrooms. This process is generally very laborious.
Schools, however, are becoming more and more willing to participate in these ini-
tiatives as the ITS field matures and produces concrete evidence of the benefits of
having intelligent tutors available in the classroom, as it is shown by the increas-
ing number of large scale school studies reported in ITS-related publications.

14.6 Discussion and Conclusions

Building a reliable picture of a student’s relevant cognitive and affective states dur-
ing learning is a task permeated with uncertainty that can be challenging even for

Bayesian Student Modeling 297

experienced human tutors. Bayesian networks is a formalism for reasoning under
uncertainty that has been successfully used in many AI applications, and that has
been extensively used in student modeling, and user modeling in general. Critics of
this approach mention the difficulty of reliably defining the model parameters
(conditional probabilities) as one of its main drawbacks. An alternative approach
for building a model of relevant student states would be to specify heuristic rules to
define how available evidence should be integrated to assess the states. Defining
these rules, however, still requires quantifying at some point complex probabilistic
dependencies, because not explicitly using probabilities does not magically get rid
of the uncertainty inherent to the modeling task. The advantage of a formal prob-
abilistic approach is that the model only needs to quantify local dependencies
among variables. The sound foundations of probability theory define how these de-
pendencies are processed and affect the other variables in the model. In contrast,
heuristic approaches require defining both the dependencies and ways to process
them. This task is not necessarily simpler that defining conditional probabilities and
entails a higher risk of building a model that generates unsound inferences. Fur-
thermore, the Bayesian network graphical representation provides a compact and
clear description of all the dependencies that exist in the domain, given the direct
conditional dependencies encoded in the model. This helps to both verify that the
postulated conditional dependencies define a coherent model, as well as debug the
model when it generates inaccurate assessments. Similarly, the underlying network
structure facilitates the process of generating automatic explanations of the results
of probabilistic inference, making Bayesian networks very well suited for applica-
tions in which it is important that the user understands the rational underling the
system behavior, as it is often the case for ITS (e.g., Zapata-Rivera and Greer
2004). Finally, Bayesian networks lend themselves well to support decision making
approaches that rely on the sound foundations of decision theory. While decision
theoretic approaches can still be too computationally expensive for handling com-
plex tutorial interactions (e.g., Murray et al. 2004), researchers have shown their
feasibility for dealing with particular pedagogical decisions in simpler domains,
such as problem selection in sentence punctuation tasks (Mayo and Mitrovic
2001). Furthermore, continuous advances in reseach on decision theoretic planning
suggest that more and more real world problems will be solvable with these
approaches (see for instance the proceedings of POMDP Practitioners Workshop:
solving real-world at http://users.isr.ist.utl.pt/~mtjspaan/POMDPPractioners/), in-
cluding problems related to complex student modeling.

References

Arroyo, I., Woolf, B.: Inferring learning and attitudes from a Bayesian Network of log file
data. In: 12th International Conference on Artificial Intelligence in Education, AIED
2005 (2005)

Bunt, A., Conati, C., Hugget, M., Muldner, K.: On Improving the Effectiveness of Open
Learning Environments through Tailored Support for Exploration. In: 10th World Con-
ference of Artificial Intelligence and Education, AIED 2001 (2001)

Buntine, W.: A Guide to the Literature on Learning Probabilistic Networks from Data.
IEEE Transactions on Knowledge and Data Engineering 8(2), 195–210 (1996)

298 C. Conati

Chi, M.: Self-explaining: The dual processes of generating inference and repairing mental
models. In: Glaser, R. (ed.) Advances in instructional psychology: Educational design
and cognitive science, vol. (5), pp. 161–238. Lawrence Erlbaum Associates, Mahwah
(2000)

Conati, C., Maclaren, H.: Empirically Building and Evaluating a Probabilistic Model of
User Affect. Modeling and User-Adapted Interaction 19(3), 267–303 (2009)

Conati, C., Merten, C.: Eye-Tracking for User Modeling in Exploratory Learning Environ-
ments: an Empirical Evaluation. Knowledge Based Systems 20(6), 557–574 (2007)

Conati, C., Gertner, A., VanLehn, K.: Using Bayesian Networks to Manage Uncertainty in
Student Modeling. Journal of User Modeling and User-Adapted Interaction 12(4), 371–
417 (2002)

Conati, C., Merten, C., Muldner, K., Ternes, D.: Exploring Eye Tracking to Increase
Bandwidth in User Modeling. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005.
LNCS (LNAI), vol. 3538, pp. 357–366. Springer, Heidelberg (2005)

Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Interaction 4(4), 253–278 (1995)

Costa, P., McRae, R.: Four ways five factors are. Personality and Individual Differences 13,
653–665 (1992)

Dean, T., Kanazawa, K.: A Model for REasoning About Persistence and Causation. Com-
putational Intelligence 5(3), 142–150 (1989)

Dempster, A., Laird, N., Rubin, D.: Maximization-likelihood from Incomplete Data via the
EM Algorithm. Journal of Royal Statistical Society, Series B (1977)

D’Mello, S., Craig, S., Witherspoon, A., McDaniel, B., Graesser, A.: Automatic detection
of learner’s affect from conversational cues. User Modeling and User-Adapted Interac-
tion, 45–80 (2008)

Ferguson, K., Arroyo, Y., Mahadevan, S., Park Woolf, B., Barto, A.: Improving Intelligent
Tutoring Systems: Using Expectation Maximization to Learn Student Skill Levels. In:
Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 453–462.
Springer, Heidelberg (2006)

Henrion, M.: Some practical issues in constructing belief networks. In: 3rd Conference on
Uncertainty in Artificial Intelligence, pp. 161–173 (1989)

Keeney, R.L., von Winterfeldt, D.: Eliciting probabilities from experts in complex technical
problems. IEEE Transactions on Engineering Management 38, 191–201 (1991)

Martin, J., VanLehn, K.: Student assessment using Bayesian nets. International Journal of
Human-Computer Studies 42, 575–591 (1995)

Mayo, M., Mitrovic, T.: Optimising ITS Behaviour with Bayesian Networks and Decision
Theory. International Journal of Artificial Intelligence in Education 12, 124–153 (2001)

Mislevy, R.: Probability-based inference in cognitive diagnosis. In: Nichols, P., Chipman,
S., Brennan, R. (eds.) Cognitive Diagnostic Assessment, pp. 43–71. Erlbaum, Hillsdale
(1995)

Moore, A., Wong, W.: Optimal Reinsertion: A New Search Operator for Accelerated and
More Accurate Bayesian Network Structure Learning. In: ICML 2003, pp. 552–559
(2003)

Murray, C., VanLehn, K., Mostov, J.: Looking Ahead to Select Tutorial Actions: A Deci-
sion-Theoretic Approach. International Journal of Artificial Intelligence in Educa-
tion 14(3-4), 235–278 (2004)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo
(1988)

Bayesian Student Modeling 299

Reye, J.: Two-phase updating of student models based on dynamic belief networks. In:
Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS 1998. LNCS, vol. 1452,
pp. 274–283. Springer, Heidelberg (1998)

Russel, S., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd edn. Prentice Hall,
Englewood Cliffs (2010)

VanLehn, K., Niu, Z.: Bayesian student modeling, user interfaces and feedback: A sensitiv-
ity analysis. International Journal of Artificial Intelligence in Education 12, 154–184
(2001)

Zapata-Rivera, D., Greer, J.: Interacting with Inspectable Bayesian Student Models. Inter-
national Journal of Artificial Intelligence in Education 14(2), 127–163 (2004)

Zhou, X., Conati, C.: Inferring User Goals from Personality and Behavior in a Causal
Model of User Affect. In: UI 2003, International Conference on Intelligent User Inter-
faces, pp. 211–281. ACM Press, New York (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

