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Abstract. Bayesian networks are a formalism for reasoning under uncertainty that 
has been widely adopted in Artificial Intelligence (AI). Student modeling, i.e., the 
process of having an ITS build a model of relevant student’s traits/states during in-
teraction, is a task permeated with uncertainty, which naturally calls for probabil-
istic approaches. In this chapter, I will describe techniques and issues involved in 
building probabilistic student models based on Bayesian networks and their exten-
sions. I will describe pros and cons of this approach, and discuss examples from 
existing Intelligent Tutoring Systems that rely on Bayesian student models 

14.1   Introduction 

One of the distinguishing features of an Intelligent Tutoring System (ITS) is that 
it is capable of adapting its instruction to the specific needs of each individual 
student, as good human tutors do. Adaptation can be performed at different  
levels of sophistication, from responding to student observable performance (e.g., 
errors), to targeting student assessed knowledge (or lack thereof), to helping  
students achieve specific goals (e.g., generate a given portion of a problem  
solution), to reacting to student emotions, to scaffolding meta-cognitive abilities 
(e.g., self-monitoring).    

The more an ITS needs to know about its student to provide the desired level of 
adaptation, the more challenging it is for the ITS to build an accurate student 
model (see chapter by Beverly Woolf) based on the information explicitly avail-
able during interaction, because this information usually provides only a partial 
window on the desired student states. In other words, student modeling can be pla-
gued by a great deal of uncertainty. In this chapter, I will illustrate an approach to 
handle this uncertainty that relies on the sound foundations of probability theory: 
Bayesian networks (Pearl 1988). Since the late eighties, Bayesian networks have 
been arguably the most successful approach for reasoning under uncertainty in AI, 
and have been widely used for both user modeling and student modeling. The rest 
of this chapter starts by providing some basic definitions. Next, it introduces Dy-
namic Bayesian networks, an extension of Bayesian networks to handle temporal 
information, and provides case studies to illustrate when and how to use static vs. 
dynamic networks in student modeling. The last part of the chapter discusses two 
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main challenges in using Bayesian networks in practice: how to choose the net-
work structure and how to specify the network parameters. For each of these chal-
lenges, the chapter illustrates a variety of solutions and provides examples of how 
they have been used in applications to student modeling. 

14.2   Bayesian Networks in a Nutshell 

Bayesian networks are graphical models designed to explicitly represent condi-
tional independence among random variables of interest, and exploit this informa-
tion to reduce the complexity of probabilistic inference  (Pearl 1988). Formally, a 
Bayesian network is a directed acyclic graph where nodes represent random  
variables and links represent direct dependencies among these variables. If we as-
sociate to each node Xi in the network a conditional probability table (CPT) that 
specifies the probability distribution of the associated random variable given its 
immediate parent nodes parents(Xi), then the Bayesian network provides a com-
pact representation of the Joint Probability Distribution (JPD) over all the vari-
ables in the network.  

P(X1, …,Xn) = ∏n
i= 1 P (Xi | Parents(Xi))                               (1) 

This equation holds assuming that the network has been constructed so that 
each node is conditionally independent of all its non-descendant nodes given its 
parents (see (Russel and Norvig 2010) for more details).  

 

Fig. 14.1 Sample Bayesian network 

Figure 14.1 shows a simple Bayesian network representing the following do-
main: the nodes Explanation A and Explanation B (indicated as EA and EB in the 
relevant CPTs) are binary variables each representing the probability that a student 
receives a corresponding explanation of concept C. The two explanations are pro-
vided independently, e.g., one at school by a teacher and one at home by a parent. 
The node Concept C (indicated as C in the relevant CPTs) is a binary variable rep-
resenting the probability that a student understands the corresponding concept. 
The nodes Answer 1 and Answer 2 (indicated as A1 and A2 in the relevant CPTs) 
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are binary variables each representing the probability that a student responds  
correctly to two different test questions related to concept C. The links and  
conditional probabilities in the network represent the probabilistic dependencies 
between receiving each of the two possible explanations for the concept, under-
standing it and then being able to answer related test questions correctly.  

14.3   Static vs. Dynamic Bayesian Networks  

The Bayesian network in Fig. 14.1 is static, i.e., it is suitable to perform probabil-
istic inference over variables with values that don’t change over time. What 
changes and is tracked by a static Bayesian network is the belief over the state of 
these variables as new evidence is collected, i.e., the posterior probability distribu-
tion of the variables given the evidence.  

 

Fig. 14.2 Example DBN 

Dynamic Bayesian networks (Dean and Kanazawa 1989), on the other hand, 
track the posterior probability of variables whose value change overtime given se-
quences of relevant observations. A Dynamic Bayesian networks (DBN from now 
on) consists of time slices representing relevant temporal states in the process to be 
modelled. For instance, Fig. 14.2 shows two time slices of a dynamic version of the 
network in Fig. 14.1. The first slice to the left represents the state of the variables 
Concept C, Explanation A and Explanation B from Fig. 14.1 after observing a stu-
dent’s answer to the first test at a given time ti. The second slice represents the state of 
the same variables after observing a student’s answer to the second test at a succes-
sive time ti+1 . The link between the variables for Concept C at times ti and ti+1 models 
the influence of time on knowledge of this concept. It can be used, for instance,  
to model forgetting by adding to the CPT for Concept C at time ti+1 a non-zero  
probability that the student does not know concept C at that time given that she knew 
it at time ti.  

A key difference between the static network in Fig. 14.1and the dynamic network 
in Fig. 14.2 is in how evidence on student test answers is taken into account to update 
the posterior probability of Concept C. In Fig. 14.1, two subsequent observations on 
Answer 1 and Answer 2 would have the same weight in updating the probability of 
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Concept C, which makes sense if the true value of that variable does not change as 
the observations are gathered. In Fig. 14.2, the effect of having observed Answer 1 at 
ti on the probability of Concept C at ti+1 is mediated by the probability of Concept C at 
time ti, while having observed Answer 2 at ti+1 has a direct effect. This makes sense if 
the true value of Concept C can change overtime, because more recent observations 
are better reflections of the current state of a dynamic process than older ones.  

14.3.1   Sample Applications to Student Modelling 

Static networks can be used in student modeling as assessment tools under the as-
sumption that the variables to be assessed (e.g., knowledge) are not changing as 
new evidence (e.g., test results) comes in. For instance, Mislevy (1995) describes 
a Bayesian student model used by the HYDRIVE tutoring system to assess a  
variety of skills and knowledge related to troubleshooting an aircraft hydraulics 
system.  Martin and Vanlehn (1995) use a Bayesian student model for off-line  
assessment of student physics knowledge from evidence on completed problem 
solutions. Arroyo and Woolf (2005) describe a Bayesian network that assesses stu-
dent attitudes toward learning with Wayang Outpost, an ITS for math (e.g., 
whether the student liked the system, found it helpful, learned from it) from statis-
tics on the student interaction with the system (e.g., time spent per problem, time 
spent per action, average incorrect actions). 

One of the first examples of using DBNs in student modeling is the knowledge 
tracing mechanism implement in the CMU Cognitive Tutors (Corbett and 
Anderson 1995). This mechanism uses Bayes theorem to compute the probability 
of mastering a rule at time ti+1  as a function of both the probability of knowing the 
rule at time ti and observations of student problem solving steps pertaining to that 
rule at time ti+1. While the original formulation of this mechanism was not in terms 
of DBNs, Reye (Reye 1998)has shown that it can be formulated as a DBN with 
the same basic behavior. One limitation of this knowledge tracing mechanism is 
that it requires knowing exactly which domain rule the current student solution 
step refers to. In order to eliminate possible ambiguities in mapping student  
solution steps with domain rules, this approach requires that students follow one 
specific solution defined a priory in the student model. For the same reason, it re-
quires that students explicitly show all their solutions steps, i.e., it does not allow 
students to combine solution steps in their heads and generate actions that are the 
results of these mental computations. These requirements result in fairly con-
strained interaction that may become frustrating for some students. Finally, in 
knowledge tracing probabilistic update is limited to one rule at the time, i.e., this 
mechanism does not exploit the dependencies among the different rules involved 
in creating a complete problem solution.  

The student model of the Andes tutoring system for physics (Conati et al. 2002) 
extends the approach proposed by Martin and Vanlehn (1995) to address the 
above limitations of knowledge tracing. For each problem solved by a student, 
Andes builds a static Bayesian network whose nodes and links represent how the 
various steps in a problem solution derive from previous steps and physics rules  
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Fig. 14.3 A physics problem and a segment of the corresponding Bayesian network in the 
Andes tutoring system 

(task-specific network from now on). For instance, Fig. 14.3B shows a (simplified) 
section of the task specific network for the problem in Fig. 14.3A, involving the 
application of Newton’s second law to find the value of a normal force. Nodes in 
this network represent (i) facts corresponding to explicit solution steps (nodes la-
beled with a F- prefix in, Fig. 14.3B); (ii) problem solving goals (nodes labeled 
with a G- prefix); (iii) physics rules (nodes labeled with a R- prefix) that generate 
these facts and goals when applied to preceding facts and goals in the solution. 
Specific rule applications are indicated by nodes labeled with a RA- prefix in Fig. 
14.3B. Alternative ways to solve a problem are represented as alternative paths to 
one or more solution steps in the network. Students can perform problem solving 
steps in their heads as they desire. When a problem solving step is entered in  
the Andes interface, Andes retrieves the corresponding fact node in the current 
task-specific Bayesian network, sets its value to true and computes the posterior 
probability of the other nodes in the network given this new evidence. All nodes 
involved in generating this step (i.e., all ancestors of the corresponding fact node) 
may be influenced by this update, with strength  dictated by the probabilistic de-
pendencies defined in the network’s CPTs. Essentially, the task-specific Bayesian 
network allows Andes to guess which implicit reasoning has generated a  
given step, with the accuracy of the guess being  influenced by how many steps 
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the student has kept in her head and how many alternative ways to generate each 
step are represented in the network. 

It should be noted that the task-specific network that Andes uses to track how a 
student solves a specific problem is not dynamic. Instead, Andes uses a form of 
dynamic network to track the evolution of student knowledge from one solved 
problem to the next. In particular, Andes maintains a long-term student model that 
encodes the posterior probability of each physics rule known by the system given 
all the solutions that a student has generated to so far. When the student starts a 
new problem, Andes generates the task-specific network for that problem as in 
Fig. 14.3, and initializes the prior probabilities of the rule nodes in the network us-
ing the posterior probabilities of the corresponding rules in the long-term model. 
As soon as the student terminates the problem, Andes discards its task-specific 
network, but saves the posterior probability of each of the network’s rule nodes in 
the domain-general student model. This probability will then become the prior of 
the rule node in the task-specific network for the next problem that uses that rule. 
This process essentially corresponds to having a DBN where each time slice con-
tains a rule node for each rule in the Andes’ knowledge base; a new time slice is 
created when the student opens a new problem, and spans the time it takes the stu-
dent to terminate problem solving. Removing a time slice when problem solving is 
over and saving rule posteriors to be used as priors in the next time slice is a form 
of recursive filtering (or roll-up). This process allows for maintaining at most two 
time slices in memory, as opposed to all the time slices tracked (Russel and 
Norvig 2010). 

An alternative to the approach used in Andes is to create a new time slice every 
time a student generates a new action. We did not adopt this approach in Andes 
because the roll-up mechanism can be computationally expensive when performed 
after every student action on networks as large as Andes’. While this approxima-
tion may prevent Andes from precisely tracking learning that happens in between 
solution steps, it did not prevent Andes and its student model to perform well in 
empirical evaluations (Conati et al. 2002). Because, in the worst-case scenario, 
probabilistic update in Bayesian networks is intractable, simplifications like the 
one discussed here must often be made to ensure that the networks are usable in 
practice, and their impact/acceptability must be verified empirically. (Murray et al. 
2004) describe an approach that does create a new slice after every student actions 
in networks comparable to Andes’. Despite adopting techniques to make network 
structure and CPTs more compact, performance testing based on simulated  
student actions showed that exact inference on the resulting models was not  
feasible. Using algorithms for approximate inference (Russel and Norvig 2010) 
improved performance, but still resulted in delayed response times on the larger 
networks tested.  

An example of a DBN-based student model that creates time slices after every 
action and that has been used is practice is found in Prime Climb, an educational 
game to help students learn number factorization. 

In Prime Climb students in 6th and 7th grade practice number factorization by 
pairing up to climb a series of mountains. Each mountain is divided into numbered 
sectors (see Figure 4), and each player can only move to a number that does not  
 



Bayesian Student Modeling 287
 

 

Fig. 14.4 The Prime Climb Interface  

share any common factors with her partner’s number, otherwise s/he falls. To help 
students with the climbing task, Prime Climb includes a pedagogical agent (see 
Figure 4) for each player, that provides individualized support, both on demand 
and unsolicited, when the student does not seem to be learning from the game. To 
provide well-timed and appropriate interventions, the agent must have an accurate 
model of student learning, but maintaining such model is hard  because perform-
ance tends to be a fairly unreliable reflection of student knowledge in educational 
games. PrimeClimb uses DBNs to handle the uncertainty involved in this model-
ling task. More specifically, there is a DBN for each mountain that a student 
climbs (the short-term student model). This DBN assesses the evolution of a stu-
dent’s number factorization knowledge during game play, based on the student’s 
game actions. Each time slice in the DBN includes a Factorization node Fx for 
each number that is relevant to make correct moves on the current mountain (i.e., 
there is a node for each number on the mountain and for each of its factors). Each 
of these factorization nodes represents whether the student has mastered the  
factorization of that number. A new time slice is created after every new student 
action, e.g., after the student clicks on a number x to move there. The one-slice-
per-action approach is feasible in Prime Climb because each time slice rarely con-
tains more than a few dozens nodes. We will provide more details of the nature of 
the Prime Climb’s DBNs in a later section.  

14.4   Using Bayesian Networks in Practice 

There are several advantages in using Bayesian networks for reasoning under un-
certainty in general, and for student modeling in particular.  

• They provide a more compact representation of the joint probability distribu-
tion (JPD) over the variables of interest. To fully specify the JDP P(X1, …,Xn) 
over variables X1, …,Xn, it is necessary to specify the probability of each  
possible combination of variable’s values (e.g., mn numbers in the case of n  
m-valued variables). To fully specify the same distribution expressed via a 
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Bayesian network, it is sufficient to specify for each node with k parents the mk 
entries of the associated CPT. If k << n, i.e., if the variables to be represented 
are sparsely connected, then the Bayesian network brings a substantial saving 
in the number of parameters that need to be specified. 

• Algorithms have been developed that exploit the network’s structure for com-
puting the posterior probability of a variable given the available evidence on 
any other variable in the network. While the worse case complexity of prob-
abilistic inference in Bayesian networks is still exponential in the number of 
nodes, in practice it is often possible to obtain performances that are suitable 
for real-world applications.  

• The intuitive nature of the graphical representation facilitates knowledge  
engineering. It helps developers focus on identifying and characterizing the 
dependencies that are important to represent in the target domain. Even when 
dependencies are left out to reduce computational complexity, these decisions 
are easy to track, record and revise based on network structure, facilitating an 
iterative design-and-evaluation approach to model construction.  

• Similarly, the underlying network structure facilitates the process of generating 
automatic explanations of the results of probabilistic inference, making Bayes-
ian networks very well suited for applications in which it is important that the 
user understands the rational underling the system behavior, as it is often the 
case for Intelligent Tutoring systems (e.g., Zapata-Rivera and Greer 2004).  

• Finally, Bayesian networks lend themselves well to support decision making 
approaches that rely on the sound foundations of decision theory. This means 
that selection of tutorial actions can be formalized as finding the action with 
maximum expected utility given a probability distributions over the outcomes 
of each possible action and a function describing the utility (desirability) of 
these outcomes (e.g., Murray et al. 2004; Mayo and Mitrovic 2001).  

 
As is the case for any representation and reasoning paradigm, however, the bene-
fits brought by Bayesian networks come with challenges. The two that arguably 
have the highest impact on the effort required by adopting this technology are: 
how to select a suitable structure and how to set the necessary network parameters. 
The next section discusses these two challenges and solutions proposed in the con-
text of using Bayesian networks in student modeling.  

14.5   Choosing Network Structure and Parameters: Examples 
from Student Modeling 

14.5.1   Network Structure  

14.5.1.1   Structure Defined Based on Knowledge 

One common misconception related to structure definition in Bayesian networks is 
that the direction of the link between two variables must represent causality. In  
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reality, the only constraint on structure is that every variable be (or can be  
reasonably assumed to be) independent of all its non-descendant nodes in the  
network, given its parent nodes. What is true is that structuring the network in the 
direction of causality makes it easier to satisfy the above constraint, because ef-
fects are independent of any previous influence given their immediate causes. In 
the domain represented in Fig. 14.1, for instance, whether the student understands 
or not concept C fully defines the probability that the student be able to answer 
questions about that concept, regardless of which explanation, if any, the student 
received.  

Furthermore, defining links in the causal direction generally results in a more 
sparsely connected network. In our example, because understanding the concept 
fully specifies the probability of each answer, there is no direct dependency be-
tween the answers and thus there is no need for a link between the corresponding 
nodes. There is also no need for a direct link between the two explanation nodes, 
because we said they are provided independently.  

 

Fig. 14.5 Alternative structure for the Bayesian network in Figure 1 

On the other hand, if we define the network as in Fig. 14.5, things change. We 
need a direct link between the two answer nodes because, given no other informa-
tion, the belief  that a student can generate a correct answer to a test is affected by 
whether or not the student can generate a correct answer to a different test that 
taps the same knowledge. Similarly, we need a direct link between the two expla-
nation nodes because they are dependent if we know the true state of the student 
understanding of concept B. For instance, knowing that the student understands 
the concept and did not receive explanation A should increase the probability that 
the student received explanation B. This relationship between explanation A, ex-
planation B and the understanding of concept C is fully captured by the structure 
in Fig. 14.1, but needs the extra arc between EA and EB in Fig 14.5. Still, the two 
networks in Fig 14.1 and Fig. 14.5 are equivalent if their CPTs are specified so 
that they represent the same JPD over the five variables involved. Which structure 
to select depends mostly on how much effort is required to specify the necessary 
network parameters (i.e., probabilities in the CPTs). Sparser networks include 
fewer parameters, but it is also important to consider how easy it is to quantify the 
needed probabilities.  
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In Andes, for instance, network structure is purely causal, capturing the follow-
ing basic relation between knowledge of physics principles and problem solving 
steps: in order to perform a given problem solving step, a student needs to know 
the related physics rule and the preconditions for applying the rule. If a step can be 
derived from different rules, the student needs to apply at least one of them. As we 
will see in more detail in the next section, this causal structure yields very intuitive 
CPTs that can be specified via a limited number of parameters. 

Matters are bit more complicated with the student model for the Prime Climb 
educational game. As we mentioned in a previous section, the student’s progress 
on a Prime Climb mountain is tracked by a DBN that includes factorization nodes 
Fx for all the numbers on that mountain and their factors. Click nodes Cx are intro-
duced in the model when the corresponding actions occur, and are set to either true or 
false depending upon whether the move was correct or not. Fig. 14.6 illustrates the 
structure used in the model to represent the relations between factorization and click 
nodes. The action of clicking on number x when the partner is on number k is repre-
sented by adding a click node Cx with parent nodes Fx and Fk (see Fig. 14.6b).  

 

Fig. 14.6 Factorization nodes in the Prime Climb student model, where Z=X*G and 
Y=V*W*X; b: Click action 

This structure represents the causal relationship between factorization knowledge 
and game actions that depend on it, which is intuitive to formalize: the correctness of 
a click is influenced by whether the student knows the factorization of the two num-
bers involved. The probability should be very high if the student knows both num-
bers, lower if the student knows only one number, and close to 0 if the student knows 
neither. Less obvious is how to choose the structure that represents the relationship 
between the factorization knowledge of a number and the factorization knowledge of 
its factors, because this relationship is not strictly causal. The rationale underlying the 
structure that was chosen for the Prime Climb network was derived based on discus-
sion with mathematics teachers: knowing the prime factorization of a number influ-
ences the probability of knowing the factorization of its factors, while the opposite is 
not true. It is hard to predict if a student knows a number’s factorization given that 
s/he knows how to factorize its non-prime factors. To represent this rationale, factori-
zation nodes are linked as parents to nodes representing their non-prime factors. The 
conditional probability table (CPT) for each non-root factorization node (e.g. Fx in 
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Fig. 14.6a) is defined so that the probability of the node being known is high when all 
parent factorization nodes are true, and decreases proportionally with the number of 
unknown parents. 

14.5.1.2   Structure Defined Based on Data 

So far we have discussed how to define network structure based on existing 
knowledge of the dependencies among the relevant variables, but this approach is 
not feasible when the variables involved are not as clearly related as the ones in 
Andes and Prime Climb. The alternative is to define the structure based on data. 
Existing algorithms (e.g., Buntine 1996; Moore and Wong 2003) perform some 
form of heuristics search over the space of possible structures. The heuristics used 
to evaluate points in the search space generally rely on either statistical measures 
of correlation to verify whether the dependencies implicit in a given structure re-
flect the dependencies in the data, or measures related to the model’s log likeli-
hood P(data|model), i.e., how well a given model explains the available data. 
These algorithms, however, require substantial amount of data to learn complex 
networks, which has limited their adoption in student modelling so far. To deal 
with limited data availability, existing work on learning the structure of Bayesian 
student models has combined ideas from these algorithms with heuristics based on 
knowledge of the target domain. Zhou and Conati (2003) for instance, have used a 
data-based approach to define the structure of a Bayesian student model that com-
bines information on student personality and interaction patterns to assess student 
goals while playing Prime Climb. Using expert knowledge to define the structure 
of this DBN was not possible. While there are theories in psychology that can be 
used to relate personality to goals users may be pursuing while playing an educa-
tional game (e.g,, learn vs. having fun), these theories are too high-level to allow 
defining specific dependencies among these variables (see for instance Costa and 
McRae (1992)). Similarly, while it is intuitive that interaction behaviours should 
are in general affected by user goals, there is limited knowledge on how goals ac-
tually impact interaction behaviours in novel environments such as Prime Climb.   

To learn the structure of the goal assessment network from data, Zhou and 
Conati (2003) run a user study during which the interaction patterns of students 
playing Prime Climb were logged and questionnaires were used to collect data on 
user personality and interaction goals. Because the amount of data collected was 
not sufficient to reliably apply existing algorithms to learn the complete network 
structure, this work used a greedy variation that separately builds and then com-
bines different subparts of the network. The dependencies to be represented in 
each subpart are selected by running a correlation analysis over the relevant vari-
ables and choosing only those correlations that are statistically significant and 
above a given threshold for strength. The choice among the alternative structures 
that can represent the selected dependencies is made based on measures of log 
likelihood, and by using intuition to choose between structures with similar scores. 
Although this approach is not sound  because the log marginal likelihood measure 
is not additive over network subparts, the resulting network (shown in Fig. 14.7) 
showed to be effective in assessing  student goals when inserted in a larger model  
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Fig. 14.7 Fragment of the goal assessment network in (Zhou and Conati 2003) 

that relies on these goals as one of the elements to infer student emotions (Conati 
and Maclaren 2009). Arroyo and Wolf (2005) use a similar approach to learn the 
structure of the Bayesian network that relates interaction behaviors to user atti-
tudes, mentioned in section 14.3.1. 

14.5.2   Network Parameters 

“Where do the parameters come from?” is arguably the first and most common 
objection that is raised in research that applies Bayesian networks to real world 
problems. As is the case for structure, the two main approaches to parameter 
specification are learning the parameters from data, or relying on domain experts 
to estimate them. Relying on expert judgment is costly and error prone. It is diffi-
cult for humans to commit to numbers their intuitions over given probabilistic de-
pendencies. There has been substantial research on techniques that support the 
probability elicitation process (e.g., Keeney and von Winterfeldt 1991), but these 
techniques usually involve rather lengthy elicitation procedures and thus tend to 
be impractical when expert availability is limited. Still, when data is not available, 
relying on experts is the only viable approach and having conditional probabilities 
that are intuitive to specify can greatly facilitate parameter elicitation. In this sec-
tion, will discuss one technique that can facilitate parameter specification by re-
ducing the number of parameters to be specified, and two techniques for learning 
parameters from data 

14.5.2.1   Parameters Reduction 

One approach that can help reduce the effort of parameter specification is to  
reduce the number of parameters by approximating the necessary conditional 
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probabilities via probabilistic variations of standard logic gates. This is the ap-
proach used by Andes to define the conditional probabilities in its task-specific 
networks.  

Recall from section 14.3.1 that a task-specific network in Andes represents one 
or more solutions to a problem in terms of how each solution element derives from 
a physics rule and from the solution elements that are preconditions for rule appli-
cation. Solution elements are either physics facts or problem solving goals, (col-
lectively identified for convenience as propositions nodes PROP- in Fig. 14.8). 
Specific rule applications are represented in the network by rule application nodes 
(Rule-Appl nodes in Fig. 14.8).  

 

Fig. 14.8 probabilistic relations among rules, rule applications and their effects in Andes's 
task specific network 

The parents of each Rule-application node include exactly rule, and a number 
of Proposition nodes corresponding to the rule’s preconditions (see Fig. 14.8). A 
Rule-application node’s value is true if the student has applied or can apply the 
corresponding rule to the propositions representing its preconditions, false other-
wise. The probabilistic relationship between a Rule-application node and its par-
ents is a Noisy-AND probabilistic gate (Henrion 1989). Here the Noisy-AND 
models the assumption that, in order to apply a rule, a student needs to know the 
rule and all its preconditions, although there is a non-zero probability α (the noise 
in the Noisy-AND), that the student will fail to apply the rule when s/he can, be-
cause of an error of distraction or some other form of slip. Thus, the α in Andes’ 
Noisy-AND gates is an estimate of how likely it is that a student commits a slip, 
and it is the only parameter that needs to be specified to define the CPTs of rule-
application nodes, regardless of how many parents they have. 

Proposition nodes have as many parents (rule-application nodes) as there are 
ways to derive them. Thus, if there are two different rule applications that lead to 
the same solution element, then the corresponding Proposition node will have two 
parents (see Fig. 14.8). In Andes, the conditional probabilities between Proposi-
tion nodes and their parents are described by a Leaky-OR relationship (Henrion 
1989), as shown in the lower part of Fig. 14.8. In a Leaky-OR relationship, a node 



294 C. Conati
 

is true if at least one of its parents is true, although there is a non-zero probability 
β of a “leak,” that the node is true even when all the parents are false. This leak 
represents in Andes the probability that a student can derive a step via guessing or 
in some other way not represented in the network, and it is the only parameter that 
needs to be specified to define the CPTs of proposition nodes, regardless of how 
many alternative ways to derive a step the network encodes.  

While the use of probabilistic logic gates in Andes greatly reduces the number 
of parameters that need to be specified, assessing the probability of a slip for each 
rule application and the probability of a guess for each solution element can still 
be a daunting task. The approach used in Andes follows a strategy that is often 
helpful when using Bayesian networks: make one or more simplifying assump-
tions that facilitate model definition and verify empirically whether the resulting 
model still yields an acceptable performance. The simplifying assumption made in 
Andes with respect to network parameters is that all slip and guess parameters are 
the same in the task-specific networks. Model adequacy was verified indirectly via 
empirical evaluations of the complete Andes system. The most extensive evalua-
tion involved an experimental condition with 140 students using Andes for home-
work activities over the course of several weeks, and a control condition with 135 
students doing homework without Andes. Students in the Andes condition scored 
significantly higher on a midterm exam covering relevant material. The accuracy 
of the Andes model was also analyzed directly by studying its performance in as-
sessing the knowledge profile of simulated student (VanLehn and Niu 2001). This 
evaluation focused on performing sensitivity analysis on the Andes models to 
identify the factors that most impact model performance. The analysis revealed 
that the factor with the highest impact is, not surprisingly, the number of solution 
steps available as evidence to the model. I contrast, varying slip and guess pa-
rameters showed to have little effect on accuracy, confirming that the assumption 
of uniform slip and guess parameters was an acceptable one to make in light of the 
savings that it brings in effort for model specification. 

14.5.2.2   Learning Parameters from Data 

When all nodes in a Bayesian networks are observable, the entries for the network’s 
CPTs can be learned via maximum-likelihood parameter estimation from frequency 
data (Russel and Norvig 2010). Unfortunately, in student modelling it is often the 
case that the variables of interest are not observable (e.g. student knowledge). Even 
when the variables are in theory observable (e.g., student goals, emotional states), in 
practice it can be very difficult to collect data on them,. Still, learning parameters 
from data is desirable because it eliminates the need to resort to the subjective judg-
ment of experts. This judgement is not only hard to obtain and possibly fallacious, it 
can also be altogether unavailable when trying to model novel phenomena such as the 
relationships between student interaction with an ITS and student emotional states.  

For this reason, there has been increasing interest in investigating how to ex-
ploit data-based techniques for parameters definition in student modeling. One ap-
proach, pioneered by Mayo and Mitrovic (2001), is to include in the student model 
only variables that are easily observable from interaction events with the tutoring 
system. In (Mayo and Mitrovic 2001) these variables model success or failure in 
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using a variety of skills involved in correctly punctuating sentences. In particular, 
for each relevant skill, the Bayesian network in (Mayo and Mitrovic 2001) in-
cludes a variable representing the probability that a student will apply the skill 
correctly the next time it is relevant, given the outcome of the student’s last at-
tempt to apply the skill. The CPTs in the network were learned from log files of 
students solving punctuation problems in CAPIT, a tutoring system to help stu-
dents practice punctuation skills. The network predictions are then used by CAPIT 
to automatically select new exercises for students, based on the criterion that a 
good exercise should involve several skills that the student has mastered and one 
or two skills that the student may still apply incorrectly. The idea of including in 
the student model only variables that are easily observable from interaction events 
obviously constraints the depth and sophistication of the inferences that an ITS 
can make about its students. However, Mayo and Mitrovic (2001) show that this 
approach is suitable and effective when the target instructional domain and inter-
actions are of limited complexity.  

 

Fig. 14.9 Simple Bayesian network to predict self-explanation from action latency and gaze 
patterns in ACE 

A second approach to learning the parameters of a student model from data relies 
on conducting empirical studies designed ad hoc to collect data on variables not ob-
servable from basic interaction events (we’ll call these variables “hard-to-observe”, to 
distinguish them from truly unobservable variables such as knowledge). For instance, 
Conati et al. (2005) conducted a study to collect data for a DBN that assesses student 
self-explanation behaviour from action latency and gaze patterns while the student is 
using an interactive simulation of mathematical functions. Self-explanation is the 
process of clarifying and elaborating instructional material to oneself, and it generally 
has a strong impact on learning (Chi 2000). In the context of studying interactive 
simulations, self-explanation relates to the effort a student makes to explain the ef-
fects of the manipulations performed on simulation parameters. The ACE system 
(Bunt et al. 2001; Conati and Merten 2007) aims to track student effort in self-
explanation and provide adaptive interventions to increase this effort when needed. 
The study in (Conati et al. 2005) collected verbal protocols of students interacting 
with ACE, and analyzed these protocols to identify both episodes in which students 
generated self-explanations as well as episodes in which students failed to reason 
about the behaviour of the interactive simulation.  These episodes where then 
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matched to both log data on latency between student actions, as well as attention pat-
terns over salient elements on the ACE interface, tracked via an eye-tracker. Frequen-
cies from this dataset where then used to set the CPT of the simple Bayesian network 
shown in Fig. 14.9 (also known as a Naive Bayes classifier). A follow-up study 
showed that, when added to a more complex model of student learning, the network 
in Fig. 14.9 reliably supports the assessment of both student self-explanation and 
learning during interaction with ACE (Conati and Merten 2007). D’Mello et al. 
(2008) and Conati and Maclaren (2009) have adopted similar approaches relying 
on sophisticated data collection to build student models that assess student emo-
tions from a variety of evidence sources.  

In the research described above, it was not known upfront which observable 
factors could be good predictors of the hard-to-observe variables. Under these cir-
cumstances, in order to create a Bayesian student model researchers need to first 
find these predictors, which requires setting up experiments to collect data on the 
hard-to-observe variables. Once the data is collected and predictors are identified, 
everything is in place to apply standard maximum-likelihood parameter estima-
tion. On the other hand, if there is an established dependency between the target 
hard-to-observe variables and a set of observable predictors, then the network pa-
rameters can be learned using EM (Dempster, et al. 1977). EM (which stands for 
Expectation-Maximization) is a class of algorithms that learn the parameters of a 
model with hidden variables by successive approximations based on two steps: the 
expectation step generates expected values of hidden variables from the current 
version of the model with approximated parameters; the maximization step refines 
the model parameters by performing maximum-likelihood parameter estimation 
using the expected values as if they were observed values. Thus, using EM re-
moves the need for setting up complex studies to get values for hard-to-observe 
variables, when the dependency structure between these variables and a battery of 
observable variables is already known. Fergusson et al. (2006), for instance, used 
EM to learn the parameters of a Bayesian network that models knowledge of 12 
geometry skills. In particular, EM was used to learn the dependencies between the 
variables representing this knowledge, and observable variables representing test 
questions designed specifically to assess the 12 target skills. The data for this work 
comes from a test that students in a Massachusetts high school had to take as part 
of a field study to evaluate the Wayang Outpost ITS for math.  

Collecting sufficient amounts of data is the bottleneck in using any form of ma-
chine learning to specify a student model. It often requires setting up strong rela-
tionships with schools so that the necessary data can be collected as part of school 
activities involving whole classrooms. This process is generally very laborious. 
Schools, however, are becoming more and more willing to participate in these ini-
tiatives as the ITS field matures and produces concrete evidence of the benefits of 
having intelligent tutors available in the classroom, as it is shown by the increas-
ing number of large scale school studies reported in ITS-related publications.  

14.6   Discussion and Conclusions 

Building a reliable picture of a student’s relevant cognitive and affective states dur-
ing learning is a task permeated with uncertainty that can be challenging even for 
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experienced human tutors. Bayesian networks is a formalism for reasoning under 
uncertainty that has been successfully used in many AI applications, and that has 
been extensively used in student modeling, and user modeling in general. Critics of 
this approach mention the difficulty of reliably defining the model parameters 
(conditional probabilities) as one of its main drawbacks. An alternative approach 
for building a model of relevant student states would be to specify heuristic rules to 
define how available evidence should be integrated to assess the states. Defining 
these rules, however, still requires quantifying at some point complex probabilistic 
dependencies, because not explicitly using probabilities does not magically get rid 
of the uncertainty inherent to the modeling task. The advantage of a formal prob-
abilistic approach is that the model only needs to quantify local dependencies 
among variables. The sound foundations of probability theory define how these de-
pendencies are processed and affect the other variables in the model. In contrast, 
heuristic approaches require defining both the dependencies and ways to process 
them. This task is not necessarily simpler that defining conditional probabilities and 
entails a higher risk of building a model that generates unsound inferences. Fur-
thermore, the Bayesian network graphical representation provides a compact and 
clear description of all the dependencies that exist in the domain, given the direct 
conditional dependencies encoded in the model. This helps to both verify that the 
postulated conditional dependencies define a coherent model, as well as debug the 
model when it generates inaccurate assessments. Similarly, the underlying network 
structure facilitates the process of generating automatic explanations of the results 
of probabilistic inference, making Bayesian networks very well suited for applica-
tions in which it is important that the user understands the rational underling the 
system behavior, as it is often the case for ITS (e.g., Zapata-Rivera and Greer 
2004). Finally, Bayesian networks lend themselves well to support decision making 
approaches that rely on the sound foundations of decision theory. While decision 
theoretic approaches can still be too computationally expensive for handling com-
plex tutorial interactions (e.g., Murray et al. 2004), researchers have shown their 
feasibility for dealing with particular pedagogical decisions in simpler domains, 
such as problem selection  in sentence punctuation tasks (Mayo and Mitrovic 
2001). Furthermore, continuous advances in reseach on decision theoretic planning 
suggest that more and more real world problems will be solvable with these 
approaches (see for instance the proceedings of POMDP Practitioners Workshop: 
solving real-world at http://users.isr.ist.utl.pt/~mtjspaan/POMDPPractioners/), in-
cluding problems related to complex student modeling.  
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